Study and Application of TSP Based on Genetic Algorithm

Zongjie Du¹, Shulin Sui¹

¹(Department college Of Mathematics & Physics/Qingdao University of Science & Technology University Name, China)

Abstract: Traveling salesman problem (TSP) has been proved a non-deterministic polynomial complete problems. Theoretically the enumeration can not only solve the problem, but can find out the optimal solution of the problem. It is almost impossible that using common enumeration to find the optimal solution in such a large search space. Therefore all kinds of optimization algorithm has been arisen to solve the traveling salesman problem. In this paper we study the traveling salesman problem based on genetic algorithm, we will transform the shortest path problem between cities to the offspring which can been got through crossover and mutation from parent, genetic algorithm circulate this process until the end. Through the numerical experiment on 31 cities, we can get the shortest path and the corresponding traversal sequence between the 31 cities. This crossover strategy based on genetic algorithm can retain the same pattern of parent, and we also generate better individual than the parent by larger probability.

Keywords: Traveling salesman problem (TSP), genetic algorithm, shortest path

I. INTRODUCTION

Traveling salesman problem is a typical combinatorial optimization problem, the problem show the simplified form and the focus of many complex problems in the field of generalization [1]. Effective solution this problem is classified as a scientific problem in twenty-first Century. Solution this problem has important theoretical significance and practical application value. Traveling salesman problem has wide application in many fields such as network communication, scheduling and chain stores of goods delivery paths. Therefore the rapid and effective solution the traveling salesman problem has important practical value.

As we all known any kind of algorithm is not perfect. Each algorithm is constantly improved and optimized, and each has its own scope of application. In the same way genetic algorithm has its advantages and disadvantages [2]. In this paper, we study traveling salesman problem based on genetic algorithm, the genetic algorithm which start from point set as the starting point has good global search capability. In this way we can quickly search the solution space of all solutions by the inherent parallelism, this distributed computing can approach to the optimal solution quickly [3].

II. INTRODUCTION THE TRAVELING SALESMAN PROBLEM AND GENETIC ALGORITHM

A. Introduction the Traveling Salesman Problem and Genetic Algorithm

Traveling salesman problem is an optimization problem. Assuming we know the mutual distance between cities, now a traveling salesman must traverse the cities, and each city can only be visited once, finally traveling salesman must return to the starting city[4]. How to arrange the path order can get the shortest length of the travel? That is to say how to seek a shortest Hamiltonian circuit.

In terms of [5] graph theory to restatement of the problem, there is a graph g = (v, e), v represent vertex set which is named the city, e represent the line between the cities, d_{ij} regard as the distance between city v_i and city v_j , then traveling salesman problem is for N cities $v = (v_1, v_2, L, v_n)$ to seek access sequence $t = (t_1, t_2, L, t_n)$, and we record $t_{n+1} = t_1$ as the Hamiltonian circuit. The mathematical model of min $I = \sigma d(t(i), t(t+1)), (i = 1, 2, \dots n)$ is the traveling salesman problem.

Therefore we need to find the shortest path from all around the travel path, the number of paths is (n-1)! from the initial point, so the traveling salesman problem is a permutation problem, Through enumeration of (n-1)! travel paths to find the shortest path of the travel paths.

Traveling salesman problem is a combinatorial optimization problem, it has been proved a nondeterministic polynomial complete problems, so we can get the approximate optimal solution by genetic algorithm.

B. Basic principles of genetic algorithm

The genetic algorithm which is a parallel random search optimization method was put forward in 1962 by Professor Holland of Michigan University in the United States. Genetic algorithm evolves constantly to get a new generation of population by going through with the rules of selection, reproduction, crossover and mutation operations, and making the search process approach to the optimal solution based on the fitness function. After several generations of evolution, the algorithm converges to the optimal solution or satisfactorysolution. The genetic algorithm mainly includes the coding design, setting the initial group, designing the fitness function, setting control parameters and designing genetic operations (including population size, hereditary frequency, crossover probability and mutation probability, etc.). The basic operation of genetic algorithm is divided into three steps [6].

(1) select operation

The selection operation choose new population from the old population by a certain probability of fitness. The better fitness, the greater probability of being selected. The purpose of selection operation is that the optimized individual can inheritance to the next generation. Genetic algorithm can set the number of population in the initial and randomly choose parent, then genetic algorithm choose the better parent after a round of operation.

(2) crossover operation

The crossover operation exchange genetic information of chromosome, the offspring will be generated by swapping and rearranging genetic information from two parents. The crossover operation procedure is as follows, firstly the crossover point randomly select in the parent generation, then check whether there is a conflict. Lastly cross operation change conflict nodes until no conflict between the generations.

A:1100: 0101 1111 B:1111: 0101 0000 Crossover A: 1100:0101 0000 B: 1111:0101 1111

(3) mutation operation

Mutation operation randomly choose one of the individuals from the population. In order to produce a better individual, mutation operation randomly select a point in the chromosome to mutation.

A: 1100 0101 1111 mutation A: 1100 0101 110

Basic operation process of genetic algorithm:

(1) initialization

Set the initial iteration number t = 0, and the maximum number of iterations T, randomly generated M individual as the initial population P(0).

(2) individual evaluation

The problem is encoded into chromosome, and definite the fitness function, computing the individual fitness of P(t) population.

(3) selection operation

The selection operator acts on the population. The purpose of selection operation is that the optimized individual can inheritance to the next generation.

(4) crossover operation

The crossover operator acts on the population. The called crossover is the operation of generating new individuals by swapping and rearranging genetic information from two parents.

(5) mutation operation

The mutation operator is acts on the population. We can get the next generation P(t+1) by

P(t) carrying out selection, crossover and mutation.

(6) termination judgment

If t > T, then the evolutionary process of the individual.

III. APPLICATION OF GENETIC ALGORITHM IN TRAVELING SALESMAN PROBLEM

A. Problem description

A total of 31 cities, each city has its own coordinate at table1. Each city can regard as a particle, the distance between the cities represent by the distance of the corresponding particle. There is no objective factors which hinder the connection between the cities. Assuming that there exist path between any two cities, we ensure that the traveling salesman smoothly pass any two cities. We use genetic algorithm to solve the optimal solution of traveling salesman problem, then we can get the corresponding traversal sequence and the shortest distance. At last we still need to check the convergence of the algorithm, and find the optimal genetic parameter of the problem.

Table1. The Coordinates of 51 Cities					
city	absciss	ordinat	city	absciss	ordinat
1	1304	2312	17	3918	2179
2	3639	1315	18	4061	2370
3	4177	2244	19	3780	2212
4	3712	1399	20	3676	2578
5	3488	1535	21	4029	2838
6	3326	1556	22	4263	2931
7	3238	1229	23	3429	1908
8	4196	1004	24	3507	2367
9	4312	790	25	3394	2643
10	4386	570	26	3439	3201
11	3007	1970	27	2935	3240
12	2562	1756	28	3140	3550
13	2788	1491	29	2545	2357
14	2381	1676	30	2778	2826
15	1332	695	31	2370	2975
16	3715	1678			

Table1: The Coordinates Of 31 Cities

B. Application and realization of genetic algorithm in traveling salesman problem

Firstly the genetic algorithm carry out initial operation and set the fitness function. In order to facilitate description of the path, we use 1 to 31 represent the 31 cities.

Secondly we randomly select two paths as the parent, two offspring can be formed through crossover and mutation.

Then according to the predefined fitness function which represent the shortest path, we take the fitness function to rank. In the first round of the calculation, the numerical experiment selected 100 population which can generate 100 offspring. We use the fitness function to sort the 200 paths, and select the best 100 offspring as the next parents. The iterative continue to operation until the optimal path is got.

Finally we change the number of iterations and check whether the obtained path converges to the optimal path.

The minimum distance is set as the fitness function [8], the expression is as follow:

$$fitness(i,1) = (1 - \frac{len(i,1) - \min len}{\max len - \min len + 0.0001})$$

Set judgment function as follow:

$$fitness(i,1) \ge jc$$
 $jc = rand * alpha$

Select the relatively optimal individual and retain the individual which its path is shortest. Then genetic algorithm enter the next iteration.

C. The results analysis

Fig. 1. Spatial distribution of 31 cities

From Figure 1 we can see that the spatial coordinates of the 31 provincial cities are not regular, that is to say we can not use a numerical optimization method to find the optimal path.

We can find that there will be lots of lines between the 31 cities, the number of the calculation is 30!. We can not find the optimal solution through a simple numerical optimization.

We can discuss the greedy method, branch and bound method, list optimization method and the simulated annealing method to solve these problems. We consider genetic algorithm which has the ability to more efficient of global optimization [9].

Firstly we consider the 1000th time of iteration, and we find that the relative optimal paths of the 1000 times are as the figure 2.

Fig. 2. 1000 iteration relative optimal path between the 31 cities

The 1000 relative optimal path length is 1.811245×10^4 .

Relative optimal path as follow: 12 14 13 6 5 3 18 22 21 20 24 23 7 10 9 8 4 2 16 17 19 25 26 27 28 30 31 1 15 29 11

Fig. 3. 1000 iteration path length variation between the 31 cities

Through the constant iteration, figure 3 show the better offspring gradually into convergence by the superior of the fittest. When the number of iteration set 1000 times, the path length gradual tend to 1.8×10^4 .

According to the theory of genetic algorithm, the more the number of iterations, the more excellent offspring can get [10]. We can see that when iterated 2000 times, the relative optimal path condition is as the figure4.

Fig. 4. 2000 iteration relative optimal path between the 31 cities

The change of superior path length is as the figure 5.

Fig. 5. 2000 iteration path length variation between the 31 cities

We can see from the figure above, the path length change is a convergent process.

The 2000 relative optimal path length is 1.662658×10^4 .

The relative optimal path of iteration 2000th times is: 5 16 3 22 21 26 28 27 31 30 25 24 20 18 17 19 23 11 29 1 15 14 12 13 6 7 2 9 10 8 4

IV. CONCLUSION

The effectiveness of genetic algorithm to solve combinatorial optimization problems has been acknowledged for scientific researchers. In order to improve the solution performance and expand the application field, scientific researchers constantly take effort to research and explore [11]. In this paper through analyzing the principle and advantages of genetic algorithm, we study traveling salesman problem based on genetic algorithm. Through numerical experiment the genetic algorithm can find the optimal solution or suboptimal solution, this shows that the algorithm has better optimization performance.

Although genetic algorithm can find a better solution in a relatively short time, genetic algorithm prone to premature convergence phenomenon. The process of finding the optimal solution needs to be iterated many times, so we can adjust some parameters to improve the speed and precision of searching for the optimal solution.

REFERENCES

- [1]. Haonan Ren, Using genetic algorithm to solve TSP problem[D]. Shandong: Shandong University, 2008.
- [2]. Yang Peng, Principle and application of genetic algorithm[M]. Beijing: National Defence Industry Press, 1999.
- [3]. Jingwei Gao, Xu Zhang, Realization of genetic algorithm for solving traveling salesman problem[J]. The computer age, (2), 2004, 19-21.
- [4]. Janghua Chen, Aiwen Lin, Ming Yang, Jian Gong, Research progress of genetic algorithm for solving TSP problem[J]. Journal of Kunming University of Science and Technology(Science and Technology), 28(4), 2003, 9-13.
- [5]. Hehua Liu, Chao Cui, Jing Chen, An improved genetic algorithm to solve traveling salesman problem[J]. Journal of Beijing institute of technology, 33(4), 2013, 390-393.
- [6]. Minghai Yao, Na Wang, Lianpeng Zhao, Improved simulated annealing and genetic algorithm for solving TSP problems[J]. Computer Engineering and Applications, 49(14), 2013, 60-65.
- [7]. GuiPing Dai, yong Wang, Yarong Hou, Traveling salesman problem solved based on genetic algorithm and its system [J]. Microcomputer information, 26(1), 2010, 15-19.
- [8]. Dengying Xuan, Fulin Wang, Minhui Gao, Haizhi Ma. A improve fitness function of genetic algorithm to [J]. Mathematics in practice and theory, 45(16), 2015, 232-238.
- [9]. Yumei Lei, Solution scheme of large scale TSP problem based on Improved Genetic Algorithm[J]. Computers and modernization, (2), 2005, 34-38.
- [10]. Sicai Zhang, Fangxiao Zhang, An improved method of fitness function of genetic algorithm[J]. Computer applications and software, 23(2), 2006, 108-110.
- [11]. Guodong Weng, A fusion of ant colony algorithm and genetic algorithm to TSP[J]. Fujian computer, (2), 2006, 115-116.